注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

《真心阳光》博客

图文音频 精品荟粹 真心打造 阳光博客

 
 
 

日志

 
 

从玩具陀螺到终极理论  

2018-01-08 17:36:37|  分类: 【科普知识】 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |

      那么,陀螺为何转而不倒?根由在于角动量守恒。通俗来说,角动量守恒就是旋转中的物体倾向于绕着相同的旋转轴,以相同方向继续旋转。如果没有外力作用,旋转永不休止。也就是说,旋转本身也有一种惯性。轻轻推一下旋转中的陀螺,它也只会开始摇摇晃晃,而不会立刻倒下来。

      地球是个更宏观的例子。数十亿年来,地球围绕着太阳公转,围绕着地轴自转,未有一刻歇息。公转而有春夏秋冬,自转而有昼夜晨昏,日常熟悉的这一切变化并非理所当然,它们来自太阳系形成时星云旋转的角动量!

      但在人力所及之处,要归纳出这个看似简单的定理,竟也花了不少时间。究其原因,是因为这个世界摩擦力无处不在,不断消磨着各种运动,以至于大贤亚里士多德竟会认为力是维持物体运动的必要条件,并且这样一错就是一千年。

     人们第一次窥视到角动量的一鳞半爪,还是在星空中,那里星体的运动没有摩擦力的阻碍。发现者是一位天文学家——开普勒。他发现的开普勒三定律,阐述了行星围绕太阳旋转的规律。而其中的第二条——无论在轨道何处,行星与太阳的连线在相同时间内扫过的面积相同——实际上就是角动量守恒的体现。而后牛顿的力学三定律以及万有引力,用可以计算的公式诠释了开普勒的发现。人类终于完全抓住了旋转的规律,可以随意计算有关旋转的一切,而角动量守恒也成为了理所当然的推论。

       对于客观规律,感性认识只是不甚可靠的第一步,可以量化并计算的理论却有着实实在在的用处。发电机和电动机利用旋转的力量,转化着不同形式的能量,构成了现代文明的基石。而在设计中,对旋转的计算直接关系到机械的安全和性能。陀螺仪则是对于角动量守恒最为直接的应用。强有力的转动使它指向固定的方向,无论是大风大浪还是火箭发射,都不能使它的指向偏离一分半毫。也唯有如此,它才能指引船只、飞机甚至宇宙探测器沿着指定的方向航行,到达最终的目的地。

        但有一位女数学家并不接受这种理所当然,她叫埃米·诺特。从玩具陀螺到终极理论 - 真心阳光 - 《真心阳光》博客图片出处:维基百科】

       我们知道,广义相对论表现“时空会随着物质弯曲”的概念。希尔伯特发现他的场方程中,出现在经典物理中理所当然的守恒量,比如能量、角动量,在他的场方程中居然不再守恒?!而埃米·诺特的回答优美得令人震惊。她认为守恒量的存在并非理所当然,而是宇宙规律对称性的体现。无论任何物理理论,只要符合某种对称性,那么这个理论中一定有一个对应的守恒量,这个量不会随着系统的演化而变化。如果物理定律在时间长河中的每一个时刻都相同,它就有着所谓的“时间平移不变性”,对应着的守恒量就是能量。如果绕着茫茫宇宙任何一个方向旋转,物理定律仍然不变,那么它就有着“旋转不变性”,对应着的守恒量就是旋转的角动量——这就是诺特定理。 

     诺特定理为现代物理学打开了一扇新的大门。有了诺特定理,物理学家开始学会通过宇宙本身的对称性推测物理定律的性质。人们认识到,对称性是探究物理的指路明灯。

       除了时空本身宏观的对称性以外,物理学家还开始探索各种局部的对称性。在量子场论中,人们发现除了时间和空间以外,物理定律在局部还依赖额外的量,有着额外的对称性。这些被称为“规范对称”的对称性,实际上可以看作更为抽象的数学空间中的旋转对称性,而它们也有着相应的守恒量。基于这些新的对称性,人们建立了一整套物理理论,被称为“规范场论”。

       这套依赖对称性的物理方法,获得了前所未有的成功。四种基本力中的三种,都能用规范场论来解释,合起来就是目前最为成功的粒子物理理论——标准模型。正因为规范场论如此成功,一些物理学家认为能描述一切的终极理论应该也是一个规范场论,一个比标准模型有着更高对称性、更多对称美的规范场论模型。

       没有人知道终极理论会是什么,但每个人都认为它一定拥有高度的对称美。而陀螺转而不倒,只是这种美的一个小小体现而已。 

  评论这张
 
阅读(8)| 评论(2)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2018